Notes

A NEW INDOLE FROM Penicillium daleae

Y. K. T. LAM, P. DAI, R. BORRIS,
A. DOMBROWSKI, R. RANSOM[†],
G. YOUNG[†], M. BEER^{††},
D. MIDDLEMISS^{††} and J. SMITH

Merck Sharp and Dohme Research Laboratories, Rahway, New Jersey 07065, U.S.A. [†]West Point, Pensylvania 19486, U.S.A. ^{††}Harlow, CM 20 2QR, U.K.

(Received for publication December 13, 1993)

Receptors for 5-hydroxytryptamine $(5-HT)^{1}$ are currently classified as 5-HT₁-like, 5-HT₂ and 5-HT₃. The 5-HT₁-like class has been further subdivided into 5-HT_{1A}, 5-HT_{1B}, 5-HT_{1C} and 5-HT_{1D} subtypes. Evaluation of the receptor binding profile of sumatriptan (GR 43175), an approved drug for the acute treatment of migraine, strongly suggests that its stimulation of the 5-HT_{1D} receptor subtype is relevant to the reported antimigraine effects²⁾. In our screening for 5-HT_{1D} receptor agonists from microbial sources, we discovered a novel indole alkaloid and determined its structure to be 3-(dimethylaminomethyl)-1-(1,1-dimethyl-2-propenyl)indole (1) (Fig. 1). This note describes the fermentation, isolation, physico-chemical characterization and biochemical properties of 1.

Penicillium daleae was obtained from the late Dr. CHARLES THOM in 1942 (strain No. 260-5034.116, Peoria 920), maintained at the Merck Culture Collection in lyophilized form as MF1134 and deposited as ATCC74115. RAPER and THOM³⁾ described this culture and assigned it as NRRL 2025. MF1134 was added under aseptic conditions to 54 ml of a seed medium in a 250-ml plain Erlenmeyer flask. The seed medium consisted of yeast extract (Difco) 0.4%, malt extract (Difco) 1% and glucose 0.4%, pH 7.0. The flask was maintained at 22°C on a rotary shaker for 3 days. A second stage seed culture was obtained by repeating the above procedure using 1 ml of the first seed culture as inoculum per flask and incubated for 2 days. A 24 ml inoculum from the second seed culture was added to 425 ml of the liquid phase of production medium in a 1-liter Erlenmeyer flask. The liquid phase of the production medium consisted of glucose 1%, fructose 1.5%, sucrose 4%, NZ Amine type E

(Sheffield Products) 0.4%, urea 0.4%, K_2HPO_4 0.05%, KCl 0.025%, MgSO₄·7H₂O 0.025%, Zn-SO₄·7H₂O 0.09% and CaCO₃ 0.8%. This liquid phase and seed mixture was mixed vigorously with 1,250 ml of vermiculite, as the solid phase, in a 4-liter roller jar. Incubation was then performed at 22°C on a roller machine for 19 days.

Fermentation in eight roller jars was extracted with methyl ethyl ketone (5,600 ml) for three hours at room temperature. Filtration over Whatman number 3 filter paper and flash evaporation afforded 6 g dry weight. Partition between water (20 ml) and methyl ethyl ketone $(4 \times 30 \text{ ml})$ yielded 2 g dry weight from the organic layers. Preparative chromatographic purification included three columns: a) Whatman partial 10 ODS-3 $(2.2 \times 50 \text{ cm})$ using $20 \sim 25\%$ acetonitrile in 0.1% TFA (aq) as mobile phase; b) E. Merck Silica gel 60 (20 g, $40 \sim 63 \,\mu m$, 2.5×10 cm) using 0.5% triethylamine in acetonehexane, $1:5 \sim 2:1$, as mobile phase; and c) Whatman partisil 10 ODS-3 (0.94×50 cm) using $20 \sim 25\%$ acetonitrile - 0.1% TFA (aq) as mobile phase. The actual sequence consisted of two rounds on a), once on b), once on a) again, and then once on c). 35 mg of homogeneous 1 was obtained in this fashion with a Rf of 0.17 [E. Merck Silica gel 60F, 0.2 mm thickness, hexane - acetone - triethylamine, 50:50:0.5] and a k' of 4.72 [Whatman partisil 5 ODS-3, acetonitrile - 0.1% TFA (aq), 3:7].

The physico-chemical properties of **1** are as follows: UV λ_{max}^{MeOH} nm (ε) 223 (12,100), 273 (4,890), 279 (5,090), 289 (4,120); FT-IR ν_{max} (ZnSe) cm⁻¹ 2991, 1679, 1550, 1460, 1202, 1135; HREI-MS m/z242.1766 (M, Calcd for C₁₆H₂₂N₂: 242.1783), 198 [M-N(CH₃)₂], 173 [M-C(CH₃)₂(CH=CH₂)], 130.0636 (base peak, for C₉H₈N: 130.0657). The m/z 198 ion results from the expected facile loss of

	¹ H NMR ^a		¹³ C NMR ^b	
Atom No.	Chemica shift	I Multiplicity (J=Hz)	Chemical shift	Multiplicity $({}^{1}J_{CH} = Hz)$
2	7.70	s	130.0	d (183)
3	N.A.		103.3	S
4	7.71	m	119.4	d (160)
5	7.16	m	121.5	d (160)
6	7.16	m	122.8	d (159)
7	7.59	m	115.8	d (164)
8	N.A.		130.4	S
9	N.A.		137.1	s
1′	N.A.		61.0	s
2′	6.17	dd (10.5, 17.5)	144.8	d (157)
3′			114.5	t (157)
а	5.14	d (17.5)		
b	5.24	d (10.5)		
4′	1.79	S	28.3	q (128)
5′	1.79	s	28.3	q (128)
1″	4.49	S	53.5	t (143)
2″	N.A.		N.A.	
3″	2.86	S	42.5	q (143)
4″	2.86	S	42.5	q (143)

Table 1. ¹H and ¹³C NMR chemical shifts assignment of 1.

 a 400 MHz and b 100 MHz spectra were recorded in CD₃OD at 20°C. Chemical shifts are reported in ppm from TMS.

N.A.: Not applicable.

N(CH₃)₂ as directed by the indole moiety. Similarly, the m/z 173 ion results from loss of the prenyl group. The m/z 130 base peak is the diagostic indole ion which in this case results (nominally) from the m/z198 ion via loss of the prenyl group with transfer of a proton. FAB-MS displays (M+H)⁺ at m/z 243 and the m/z 198 fragment is the base peak. The plus matrix peaks are also observed.

Extensive 1D (¹H, decoupling, and ¹³C: broad band decoupled, gated, and attached proton test) and 2D NMR [including ¹H-¹H COSY, ¹³C-¹H COSY and NOESY] experiments (data not shown) allowed the assignment of 1 as a new indole alkaloid, 3-(dimethylaminomethyl)-1-(1,1-dimethyl-2-propenyl)indole. The chemical shift assignments are listed in Table 1. The exceptionally down field nature of 2-H in 1 (δ 7.70 ppm) as compared to related compounds⁴⁾, indole (δ 6.68 ppm), 1-methylindole (δ 6.82 ppm) and 3-methylindole (δ 6.80 ppm), is supported by correlation between 2-H and C-2 in a ¹³C-¹H COSY experiment. The C-2 chemical shift in 1 (δ 130.0 ppm) is comparable to that reported⁵) for 1-methylindole (δ 129.0 ppm) in perdeuterodioxane. In a NOESY experiment with a 500 millisecond mixing time, 2-H showed a positive NOE

Fig. 2. Postulated rotamers of 1.

Table 2. Effect of 1 on binding to 5-HT receptor subtypes.

A	% Inhibition of 1 @ μ M		
	4.1	41	
-HT _{1D}	44	81	
-HT _{1A}	20	62	
5-HT ₂	42	86	

correlation with both 1"-H₂ (δ 4.49 ppm) and the two methyl singlets of the prenyl side chain at δ 1.79 ppm (4'-H₃ and 5'-H₃). This NOE data can be accommodated by postulating the existence of two sterically favored rotamers where NOE interactions between 2-H and both 4' and 5'-methyls are anticipated (see Fig. 2) and where, in each case, 2-H falls in the deshielding zone of C-2' ~ C-3' double bond. In addition, in a ¹³C-¹H long range COSY experiment, correlations between 1"-H₂ with both C-2 and C-8 (δ 130.4 ppm) were observed. These correlations strongly support the structure shown.

5-HT_{1D} radioligand binding assay was carried out according to HEURING and PEROUTKA⁶⁾ with slight modifications as follows. Polypropylene tubes containing ³H-5-HT (2nм), cyanopindolol (100 nм), mesulergine (100 nm) and crude pig striatal membranes (10 mg wet weight per tube) in a final assay volume of 1 ml were used. All reagents and tissues were made up in 50 mM Tris-HCl containing 0.1% ascorbate, 10 µm pargyline and 4 mm CaCl₂ (pH 7.7 at room temperature). 5-HT (10 μ M) was used to define non-specific binding. The incubation was initiated by the addition of membranes and carried out for 30 minutes at 37°C. Following incubation, membranes were rapidly filtered under vacuum through Whatman GF/B filters using a Brandel Cell Harvester, followed by 2×3 ml washes with 50 mm Tris-HCl (pH 7.7 at room temperature). Bound radioactivity was determined by liquid scintillation spectrometry. 5-HT_{1A} and 5-HT₂ radioligand binding assays were performed according to HALL et al.7) and TITELER et al.8) respectively. Results of these binding assays are presented as the mean of triplicates in Table 2. 1 has less affinity for 5-HT_{1A} than for 5-HT_{1D} and 5-HT_2 receptor subtypes, for which it has similar affinity and thus is not selective between the latter two. For comparison, sumatriptan shows a rank order of affinity for these subtypes: $5\text{-HT}_{1D} > 5\text{-HT}_{1A} > 5\text{-HT}_2$ with pIC₅₀'s of 7.7, 6.3 and <5.0, respectively.

Functionally, 1, at up to a $10 \,\mu\text{M}$ concentration, lacks any 5-HT_{1D} agonist action in a guinea pig brain preparation using the method of WAEBER *et al.*⁹.

1 does not seem to possess the potential of sumatriptan as a therapeutic agent. However, N-alkylated indoles are unusual natural products, especially as microbial metabolites. The present producing strain seems able to N-alkylate indoles. To really assess the effects of such a substitution in the search for antimigraine therapy, it may be worthwhile to incorporate such structural features into medicinal chemistry programs.

References

- PEROUTKA, S. J.: 5-Hydroxytryptamine receptor subtypes. Ann. Rev. Neurosci. 11: 45~60, 1988
- 2) DOENICKE, A.; J. BRAND & V. L. PERRIN: Possible benefits of GR43175, a novel 5-HT₁-like receptor

agonist, for the acute treatment of severe migraine. Lancet $1309 \sim 1311$, 1988

- RAPER, K. B. & C. THOM: A Manual of the Penicillia. pp. 296~299, The Williams & Wilkins Company, Baltimore, 1949
- YAMAGUCHI, K.: Spectral Data of Natural Products. p. 574, Elsevier Publishing Company, New York, 1970
- BREITMAIER, E. & W. VOELTER: ¹³C NMR Spectroscopy, 2nd ed. p. 203, Verlag Chemie, New York, 1978
- HEURING, R. E. & S. J. PEROUTKA: Characterization of ³H-5-HT binding in bovine caudate. J. Neurosci. 7: 894~903, 1987
- HALL, M. D.; S. EL MESTIKAWY, M. B. EMERIT, L. PICHAT, M. HAMON & H. GOZLAN: [³H]8-Hydroxy-2-(di-n-propyl-amino)tetralin binding to pre- and post-synaptic 5-hydroxytryptamine sites in various regions of the rat brain. J. Neurochem. 44: 1685~1696, 1985
- TITELER, M.; K. HERRICK, R. A. LYON, J. D. MCKENNEY & R. A. GLENNON: [³H]DOB: A specific agonist radioligand for 5-HT₂ serotonin receptors. Eur. J. Pharmacol. 117: 145~146, 1987
- 9) WAEBER, C.; P. SCHOEFFTER, J. M. PALACIOS & D. HOYER: 5-HT_{1D} receptors in guinea pig and pigeon brain. Naunyn-Schmiedeberg's Arch. Pharmacol. 340: 479~485, 1988